학회 | 한국재료학회 |
학술대회 | 2020년 가을 (11/18 ~ 11/20, 휘닉스 제주 섭지코지) |
권호 | 26권 1호 |
발표분야 | 특별심포지엄8. 첨단신소재 응용 및 분석기법 심포지엄-오거나이저: 조형균(성균관대), 정후영(UNIST) |
제목 | Photoelectrochemial applications using stratigically designed new materials |
초록 | The demand for steady and dependable power sources is very high in the field of sustainable energy because of the limited amount of fossil fuels reserves. Among several sustainable alternatives, solar energy may be the most efficient solution because it constitutes the largest renewable energy source. So far, the only practical way to store such large amounts of energy has been to use a chemical energy carrier likewise a fuel. In various solar energy to power conversion systems, the photoelectrochemical (PEC) splitting of water into hydrogen and oxygen by the direct use of solar energy is an ideal process. It is a renewable method of hydrogen production integrated with solar energy absorption and water electrolysis using a single photoelectrode. Previous studies on photoelectrode films for PEC water splitting cells have been mainly focused on synthesizing oxide semiconductors with wide band gaps, such as TiO2(3.2eV), WO3(2.8eV), and Fe2O3(2.3eV). Unfortunately, these pristine oxide photoanodes without any catalysts have relatively low photocurrent densities because of the inherent limitation of insufficient visible light absorption due to the wide bandgap. Specifically, there is a tradeoff between high photocurrent and photoelectrochemical corrosion behavior, which is representative of figures of meritf or PEC materials. |
저자 | 김동수, 조형균 |
소속 | 성균관대 신소재공학과 |
키워드 | <P>광전기화학셀; 수소발생; 산화물; 구동방법</P> |