화학공학소재연구정보센터
학회 한국화학공학회
학술대회 2018년 봄 (04/25 ~ 04/27, 창원컨벤션센터)
권호 24권 1호, p.125
발표분야 공정시스템
제목 Improved Parameter Estimation in Model Refinement
초록 In parameter estimation, an ill-conditioning problem arises from a lack of available data compared to the number of parameters, high measurement noise, insignificant parameters and correlations between parameters. To improve parameter estimability, parameter subset selection has been investigated; the modeler only selects influential and less correlated parameters to estimate while unselected parameters are fixed at their nominal values. Although elimination of correlation between parameters enables unique determination of parameter values, there is no criterion to decide which parameter in a correlated set is more estimable and significant to describe process behavior. In this study, estimation of a subset of transformed parameters to directions of principal components of the covariance matrix is proposed. The proposed method selects parameters to estimate from uncorrelated transformed parameters instead of original correlated parameters, decreasing mean squared error for parameter estimates. Performance of the proposed method is demonstrated from statistical analysis and case studies of linear and nonlinear regression.
저자 김보은, 이재형
소속 KAIST
키워드 화학 및 생물공정; 공정모델링
E-Mail
원문파일 초록 보기