화학공학소재연구정보센터
Fuel, Vol.90, No.2, 665-673, 2011
Modeling of vapor-liquid equilibrium of gasoline-ethanol blended fuels for flash boiling simulations
Flash boiling is a physical phenomenon which governs the non-equilibrium phase change of a high temperature fluid as it is depressurized below its vapor pressure. The modeling of this process is of importance to a number of industrial applications and requires the vapor-liquid equilibrium properties of the fluid under consideration. The highly non-ideal nature of gasoline-ethanol fuel blends makes vapor-liquid equilibrium calculations extremely difficult for such fluids. A simple model known as GEFlash (Gasoline-Ethanol Flash), based on existing literature and fundamental chemical engineering thermodynamics is proposed to calculate the properties of gasoline-ethanol fuel blends that are required to perform flash boiling simulations. In addition, a second model based on the chemical engineering software Aspen Plus is also proposed and the predictions of the two models are validated against experimental data available in open literature. The results indicate that both models reproduce the trend in experimental data for vapor pressures and saturated liquid density for blends with different ethanol contents. The GEFlash model does not match the vapor mole fraction predictions of the Aspen Plus model for fuels with low ethanol content (E20 and E40). However, the vapor mole fractions for high ethanol content fuels (greater than E60) are accurate over the majority of the temperature range tested. (C) 2010 Elsevier Ltd. All rights reserved.