화학공학소재연구정보센터
Journal of Adhesion, Vol.42, No.1, 1-23, 1993
A THERMOMECHANICAL STUDY OF SOME EPOXY ADHESIVES SUBJECTED TO COMBINED DYNAMIC AND STATIC STRESSES
The object of the present study was to investigate the effect of superimposed dynamic and static stresses on mechanical and thermal properties of some epoxy adhesives. It was found that combinations of shear creep and torsional oscillations, applied simultaneously to adhesive joints at temperatures within the glassy range of the adhesive, led to strengthening of the joints in shear and to an increase in the glass transition temperature of the adhesive. Similar loading stresses applied at temperatures close to the T(g) of the adhesive, led to opposite effects on the above mentioned properties of the joints. The width of the glassy-rubbery transition of the adhesives increased, in the whole range of temperatures used in this study and for all epoxy compositions, as a result of subjecting the joints to superimposed dynamic and static stresses. The broadening of the glass transition was interpreted as a result of the stiffening of polymer network during the combined stressing experiments. A linear relationship was found between the area of endothermal peaks in the first DSC scan of specimens subjected prior to test to superimposed dynamic and static stresses at temperatures below T(g), and the shear strength of the joints. In agreement with this observation and with literature data, a linear relationship was revealed also between the glass transition temperature of the resins (measured in the first DSC scan) and the shear strength of the joints. Based on experimental observations and on some literature information, it was suggested that the strengthening of the joint, as well as the changes in thermal properties of the adhesives, are mainly due to physical processes, such as short-range orientation of network chains and an increase in intermolecular interaction between highly polar sites of the network. The possibility that superimposed stressing led to changes in chemical crosslinking was discussed but it seems that no such reactions occurred.