Current Applied Physics, Vol.9, No.3, 678-682, 2009
Influence of metal powder shape on drag coefficient in a spray jet
In plasma spraying, particle shape, size, distribution and density are the important factors to be considered in order to ensure high spray efficiency and better coating properties. In the present work, nickel, iron and aluminium irregular powders in the size range from 50 to 63 pm were spheroidized using thermal plasma processing. The spheroidization experiments have been carried out at different gas flow rates and plasma torch power levels. The sphericity was analyzed using shape factor. Drag coefficients of the powders were estimated using Reynolds number and sphericity of the powders in plasma. For irregular particles, the drag coefficient is higher than that of the spherical because of its large area of contact with plasma. The temperature dependent on drag coefficient is also discussed. Increasing temperature increases the drag coefficient of the powder particles injected in to the plasma jet. Increasing plasma jet temperature changes the density and viscosity of the plasma which affects the particle's drag coefficient in the plasma. The results are reported and discussed. (C) 2008 Elsevier B.V. All rights reserved.