Catalysis Today, Vol.159, No.1, 108-119, 2011
Rapid optical screening technology for direct methanol fuel cell (DMFC) anode and related electrocatalysts
We describe here the development of an optical high-throughput screening method for direct methanol fuel cell catalysts based on the fluorescence of protonated quinine generated during electro-oxidation of methanol. The design of the working electrode allows the parallel quantification of the fluorescence development for up to 60 materials. For the preparation of the working electrode a coating routine has been developed, which allows the use of sol-gel derived materials. Due to the required stability of the electrode catalysts towards the acidic polymer membrane, a fast optical pre-screening method for acid stable materials has been developed. The electrochemical high-throughput system has been validated with Pt-Ru catalysts. Automation of data acquisition and data processing led to a fast and reliable high-throughput screening setup. (C) 2010 Elsevier B.V. All rights reserved.