화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.50, No.5, 802-807, October, 2012
1 Nm3/h급 연료 변환시스템에서 메탄의 자열 개질반응
Autothermal Reforming Reaction at Fuel Process Systems of 1Nm3/h
E-mail:
초록
본 연구에서는 메탄으로부터 합성가스를 만드는 자열 개질(Autothermal reforming)반응 특성을 Ni (15 wt%)-Ru (1wt%)/Al2O3-MgO 금속모노리스 촉매체와 전기 발열식 촉매를 사용하여 조사하였다. 자체 가동 형 반응기는 자열 개질반응기에 700 ℃ 반응물을 공급하는데 걸리는 start-up 시간이 2분 이내였다. 반응물의 O2/CH4와 H2O/CH4 비가 메탄의 전환율과 반응기의 온도 분포에 미치는 영향은 매우 크다. 반응기의 온도는 H2O/CH4 비가 감소할수록 흡열반응에서 발열반응으로 전환되어 증가한다. 또한 H2O/CH4 비가 증가함에 따라 수성가스화 전이반응에 의하여 생성물 중에 CO2양이 증가한다. GHSV=10,000 h^(-1), 반응물 조성(H2O/CH4=0.6과 O2/CH4=0.5)의 자열 개질반응에서, 97%의 메탄의 전환율을 얻었으며, 반응기의 온도는 600 ℃로 유지되었다. 이 반응조건에서 170 cc 금속모노리스 촉매체를 충진한 반응기에서 자열개질 반응으로 생성된 최대 합성가스의 유량은 0.94 Nm3/h 이었다.
The autothermal reforming of methane to syngas has been carried out in a reactor charged with both a Ni(15 wt%)-Ru (1 wt%)/Al2O3-MgO metallic monolith catalyst and an electrically-heated convertor (EHC). The standalone type reactor has a start-up time of less than 2 min with the reactant gas of 700 ℃ fed to the autothermal reactor. The O2/CH4 and H2O/CH4 ratio governed the methane conversion and temperature profile of reactor. The reactor temperature increased as the reaction shifted from endothermic to exothermic reaction with decreasing H2O/CH4 ratio. Also the amount of CO2 in the products increases with increasing H2O/CH4 ratio due to water gas shift reaction. The 97% of CH4 conversion was obtained and the reactor temperature was maintained 600 ℃ at the condition of GHSV=10,000 h^(-1) and feed ratio (H2O/CH4=0.6 and O2/CH4=0.5). In this condition, the maximum flow rate of the syngas generated from the reactor charged with 170 cc of the metallic monolith catalyst is 0.94 Nm3/h.
  1. Lee TJ, Cho KT, Lee JD, Korean Chem. Eng. Res., 45(6), 663 (2007)
  2. Kang MG, Lee TJ, Lee JD, Korean Chem. Eng. Res., 47(1), 17 (2009)
  3. Lee CH, Lee TJ, Shin JS, Lee JD, J. Korean oil Chemists' Soc., Ion., 28(3), 321 (2011)
  4. Lindstrom B, Pettersson LJ, J. Power Sources, 118(1-2), 71 (2003)
  5. Jung H, Yoon WL, Lee H, Park JS, Shin JS, La H, Lee JD, J. Power Sources, 124(1), 76 (2003)
  6. Santos DCRM, Madeira L, Passos FB, Catal. Today, 149(3-4), 401 (2010)
  7. Chen L, Zhu Q, Wuab R, Int. J. Hydrogen Energy., 36(3), 2128 (2011)
  8. Chen L, Zhu Q, Hao Z, Zhang T, Xie Z, Int. J. Hydrogen Energy., 35(16), 8494 (2010)
  9. Nagaraja BM, Bulushev DA, Beloshapkin S, Ross JRH, Catal. Today, 178(1), 132 (2011)
  10. Guo Y, Zhou L, Kameyama H, Int. J. Hydrogen.Energy., 36(9), 5321 (2011)
  11. Wu P, Li X, Ji S, Lang B, Habimana F, Li C, Catal. Today., 146(1-2), 82 (2009)
  12. Ryu JH, Lee KY, La H, Kim HJ, Yang JI, Jung H, J. Power Sources, 171(2), 499 (2007)
  13. Guo Y, Zhou L, Kameyama H, Chem. Eng. J., 168(1), 341 (2011)
  14. Roh HS, Lee DK, Koo KY, Jung UH, Yoon WL, Int. J. Hydrogen Energy., 35(4), 1613 (2010)
  15. Chena WH, Linb MR, Luc JJ, Chaod Y, Leub TS, Int. J. Hydrogen Energy., 35(21), 11787 (2010)
  16. Ayabe S, Omoto H, Utaka T, Kikuchi R, Sasaki K, Teraoka Y, Eguchi K, Appl. Catal. A: Gen., 241(1-2), 261 (2003)
  17. Takeguchi T, Furukawa SN, Inoue M, Eguchi K, Appl. Catal. A: Gen., 240(1-2), 223 (2003)