화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.116, No.32, 8321-8333, 2012
Ligand Recruitment and Spin Transitions in the Solid-State Photochemistry of (FeTPPCI)-T-(III)
We report evidence for the formation of long-lived photoproducts following excitation of iron(III) tetraphenylporphyrin chloride ((FeTPPCl)-T-(III)) in a 1:1 glass of toluene and CH2Cl2 at 77 K. The formation of these photoproducts is dependent on solvent environment and temperature, appearing only in the presence of toluene. No long-lived product is observed in neat CH2Cl2 solvent. A 2-photon absorption model is proposed to account for the power-dependent photoproduct populations. The products are formed in a mixture of spin states of the central iron(III) metal atom. Metastable six-coordinate high-spin and low-spin complexes and a five-coordinate high-spin complex of iron(III) tetraphenylporphyrin are assigned using structure-sensitive vibrations in the resonance Raman spectrum. These species appear in conjunction with resonantly enhanced toluene solvent vibrations, indicating that the Fe-(III) compound formed following photoexcitation recruits a toluene ligand from the surrounding environment. Low-temperature transient absorption (TA) measurements are used to explain the dependence of product formation on excitation frequency in this photochemical model. The six-coordinate photoproduct is initially formed in the high-spin Fe-(III) state, but population relaxes into both high-spin and low-spin state at 77 K. This is the first demonstration of coupling between the optical and magnetic properties of an iron-centered porphyrin molecule.