화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.365, No.1, 150-155, 2012
The interaction between G-quadruplex-forming oligonucleotide and cationic surfactant monolayer at the air/water interface
We report on the interactions between a 21-mer quadruplex-forming oligonucleotide bearing human telomere sequence of dG(3)(T(2)AG(3))(3) (G4 DNA) and a positively charged dioctadecyldimethylammonium bromide (DODAB) monolayer at the air-aqueous interface, studied by surface film balance measurements. In the presence of G4 DNA, the it-A isotherm of the cationic Langmuir film shifted to lower molecular areas when compared with the reference isotherm recorded on the subphase containing only 50 mM triethylamine-acetate (TEAA) buffer. The presence of quadruplex-stabilizing metal cations (K(+) or Na(+)) further affected profiles of pi-A isotherms. Further insight into processes related to the G4 DNA - monolayer interactions was provided by recording time profiles of the surface pressure of monolayer at a constant mean molecular area. In these experiments G4 DNA and/or metal ions were sequentially injected under the monolayer surface. Results indicated that multistranded assemblies of G4 DNA were formed at the monolayer interface even in the absence of metal ions, which suggested that the charged cationic surface of Langmuir monolayer induced aggregation of guanine-rich DNA strands. The presence of sodium and potassium ions inhibited formation of multi-stranded assemblies through the competitive G-quadruplex formation but to different extent that might be related to the differences in stability and topology of both quadruplexes. (C) 2011 Elsevier Inc. All rights reserved.