화학공학소재연구정보센터
International Journal of Energy Research, Vol.36, No.11, 1105-1120, 2012
Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects
The commercial development and current economic incentives associated with energy storage using redox flow batteries (RFBs) are summarised. The analysis is focused on the all-vanadium system, which is the most studied and widely commercialised RFB. The recent expiry of key patents relating to the electrochemistry of this battery has contributed to significant levels of commercialisation in, for example, Austria, China and Thailand, as well as pilot-scale developments in many countries. The potential benefits of increasing battery-based energy storage for electricity grid load levelling and MW-scale wind/solar photovoltaic-based power generation are now being realised at an increasing level. Commercial systems are being applied to distributed systems utilising kW-scale renewable energy flows. Factors limiting the uptake of all-vanadium (and other) redox flow batteries include a comparatively high overall internal costs of $217?kW-1?h-1 and the high cost of stored electricity of approximate to $0.10kW-1h-1. There is also a low-level utility scale acceptance of energy storage solutions and a general lack of battery-specific policy-led incentives, even though the environmental impact of RFBs coupled to renewable energy sources is favourable, especially in comparison to natural gas- and diesel-fuelled spinning reserves. Together with the technological and policy aspects associated with flow batteries, recent attempts to model redox flow batteries are considered. The issues that have been addressed using modelling together with the current and future requirements of modelling are outlined. Copyright (c) 2011 John Wiley & Sons, Ltd.