화학공학소재연구정보센터
Electrophoresis, Vol.33, No.7, 1095-1101, 2012
A facile electrophoretic technique to monitor phosphoenolpyruvate-dependent kinases
Phosphoenolpyruvate (PEP)-dependent kinases are central to numerous metabolic processes and mediate the production of adenosine triphosphate (ATP) by substrate-level phosphorylation (SLP). While pyruvate kinase (PK, EC: 2.7.1.40), the final enzyme of the glycolytic pathway is critical in the anaerobic synthesis of ATP from ADP, pyruvate phosphate dikinase (PPDK, EC: 2.7.9.1), and phosphoenolpyruvate synthase (PEPS, EC: 2.7.9.2) help generate ATP from AMP coupled to PEP as a substrate. Here we demonstrate an inexpensive and effective electrophoretic technology to determine the activities of these enzymes by blue-native polyacrylamide gel electrophoresis (BN-PAGE). The generation of pyruvate is linked to exogenous lactate dehydrogenase (LDH), and the oxidation of reduced nicotinamide adenine dinucleotide (NADH) coupled to 2,6-dichloroindophenol (DCIP) and iodonitrotetrazolium chloride (INT) results in a formazan precipitate which is easily quantifiable. The selectivity of the enzymes is ensured by including either AMP or ADP and pyrophosphate (PPi) or inorganic phosphate (Pi). Activity bands were readily obtained after incubation in the respective reaction mixtures for 2030 min. Cell-free extract concentrations as low as 20 mu g protein equivalent yielded activity bands and substrate levels were manipulated to optimize sensitivity of this analytical technique. High-pressure liquid chromatography (HPLC), two-dimensional (2-D) SDS-PAGE (where SDS is sodium dodecyl sulfate), and immunoblot studies of the excised activity band help further characterize these PEP-dependent kinases. Furthermore, these enzymes were readily identified on the same gel by incubating it sequentially in the respective reaction mixtures. This technique provides a facile method to elucidate these kinases in biological systems.