Electrophoresis, Vol.33, No.3, 419-425, 2012
Role of streaming potential on pulsating mass flow rate control in combined electroosmotic and pressure-driven microfluidic devices
In the present study, we investigate the implications of streaming potential on the mass flow rate control in a microfluidic device actuated by the combined application of a pulsating pressure gradient and a pulsating, externally applied, electric field. We demonstrate that the temporal dynamics due to streaming potential effects may lead to interesting non-trivial aspects of the resultant transport characteristics. Our results highlight the importance of an adequate accounting of the streaming potential effects for temporally tunable mass flow rate control strategies, which may act as a useful design artifice to augment mass flow rates in practical scenarios.