Composite Interfaces, Vol.19, No.1, 15-27, 2012
Effect of monomer-treated inorganic fillers on mechanical, rheological, and thermal properties of LLDPE nanocomposites
This article discusses the role of nanoscale calcium carbonate (nCC) surface treatment in affecting the mechanical, rheological, and thermal properties of linear low-density polyethylene (LLDPE). The mechanical tests indicated that nCC could simultaneously reinforce and toughen LLDPE. In addition, the composite sample with methacrylic acid (MA)-treated nanoparticles shows further increased mechanical properties as compared to unmodified nanoparticles. In the presence of dicumyl peroxide (DCP), a small amount of MA could increase markedly the mechanical properties of LLDPE/nCC composites. The results of rheological property analysis indicated that the viscosity increased with increasing amount of the filler, especially at low shear rates, but showed a substantial reduction with increasing concentration of the reactive monomer. The thermal behavior of these materials is evaluated by differential scanning calorimetry and thermogravimetric analysis. The addition of a small amount of MA and DCP enhances the stabilization of the blends.