Combustion and Flame, Vol.159, No.5, 1949-1959, 2012
The turbulent burning velocity of iso-octane/air mixtures
Turbulent burning velocities of iso-octane air mixtures have been measured for expanding flame kernels within a turbulent combustion bomb. High speed schlieren images were used to derive turbulent burning velocity. Turbulent velocity measurements were made at u' = 0.5, 1.0, 2.0, 4.0, 6.0 m/s, equivalence ratios of 0.8, 1.0, 1.2, 1.4 and pressures of P = 0.1, 0.5, 1.0 MPa. The turbulent burning velocity was found to increase with time and radius from ignition, this was attributed to turbulent flame development. The turbulent burning velocity increased with increasing rms turbulent velocity, and with pressure; although differences were found in the magnitude of this increase for different turbulent velocities. Generally, raising the equivalence ratio resulted in enhanced turbulent burning velocity, excepting measurements made at the lowest turbulent velocity. The results obtained in this study have been compared with those evaluated for a number turbulent burning velocity correlations and the differences are discussed. (C) 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.