Biomacromolecules, Vol.13, No.5, 1573-1583, 2012
Photoresponsive Poly(S-(o-nitrobenzyl)-L-cysteine)-b-PEO from a L-Cysteine N-Carboxyanhydride Monomer: Synthesis, Self-Assembly, and Phototriggered Drug Release
A photoresponsive S-(o-nitrobenzy1)-L-cysteine N-carboxyanhydride (NBC-NCA) monomer was for the first time designed, and the related poly(S-(o-nitrobenzyI)-L-cysteine)-b-poly(ethylene glycol) (PNBC-b-PEO) block copolymers were synthesized from the ring-opening polymerization (ROP) of NBC-NCA in DMF solution at 25 degrees C. Their molecular structures, physical properties, photoresponsive self-assembly, and drug release of PNBC-b-PEO were thoroughly investigated. The beta-sheet conformational PNBC block within copolymers presented a thermotropic liquid crystal phase behavior, and the crystallinity of PEO block was progressively suppressed over the PNBC composition. The characteristic absorption peaks of these copolymers at about 310 and 350 nm increased over UV irradiation time and then leveled off, indicating that the o-nitrobenzyl groups were gradually photocleaved from copolymers until the completion of photocleavage. The PNBC-b-PEO copolymers self-assembled into spherical nanoparticles in aqueous solution, presenting a photoresponsive self-assembly behavior, together with a size reduction of nanoparticles after irradiation. The anticancer drug doxorubicin can be released in a controlled manner by changing the light irradiation time, which was induced by gradually photocleaving the PNBC core of nanoparticles. This work provides a facile strategy not only for the synthesis of photoresponsive polypeptide-based block copolymers but also for the fabrication of photoresponsive nanomedicine potential for anticancer therapy.