화학공학소재연구정보센터
Biomacromolecules, Vol.13, No.5, 1244-1249, 2012
Hydrogel Biopolymer Created from the Self-Assembly of a Designed Protein Containing a Four-Helix Bundle Forming Motif
A protein hydrogel system based on the assembly of a four-helix bundle motif was proposed and synthesized by genetic engineering methods. This new polypeptide, named GBH1, consists of identical amphipathic helices of 22 residues in length oriented in opposite fashion to one another at each end of a polypeptide with a total length of 227 amino acids. The middle portion of the polypeptide (residues 79-147) is an unstructured random coil. The region between the amphipathic and unstructured segment is an a-helical stretch (23-78 sand 148-204) not possessing a sequence compatible with a coiled-coil conformation, but rather possesses regions that have overwinding of the helix. The thermal unfolding of GBH1 shows more than one inflection point (T-m1 = 30.5 degrees C, T-m2 = 64.6 degrees C), indicative of a partially unfolded intermediate and, thus, multiple interactions in the folded state. A qualitative assessment of hydrogel formation with varying pH showed that acidic conditions did not support the gel state, indirectly indicating that the proposed four-helix bundle is the major cross-linking structure and not a leucine zipper motif. Scanning electron microscopy reveals a network of interacting protein molecules forming a spongelike matrix with numerous pores that would be occupied with water molecules.