화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.423, No.1, 91-97, 2012
Arterial shear stress augments the differentiation of endothelial progenitor cells adhered to VEGF-bound surfaces
Our ongoing studies show that vascular endothelial cell growth factor (VEGF)-bound surfaces selectively capture endothelial progenitor cells (EPCs) in vitro and in vivo, and that surface-bound VEGF stimulates intracellular signal transduction pathways over prolonged culture periods, resulting in inductive differentiation of EPCs. In this article, we investigated whether simulated arterial shear stress augments the differentiation of EPCs adhered to a VEGF-bound surface. Human peripheral blood-derived mononuclear cells adhered to a VEGF-bound surface were exposed to 1 day of shear stress (15 dynes/cm(2), corresponding to shear load in arteries). Shear stress suppressed the expression of mRNAs encoding CD34 and CD133, which are markers for EPCs, and augmented the expression of mRNAs encoding CD31 and von Willebrand factor (vWF) as well as vWF protein, which are markers for endothelial cells (ECs). Shear stress enhanced expression of ephrinB2 mRNA, a marker for arterial ECs, but did not significantly change expression of EphB4 mRNA, a marker for venous ECs. Focused protein array analysis showed that mechanotransduction by shear stress activated the p38 and MAPK pathways in EPCs. Thus, arterial shear stress, in concert with surface-bound VEGF, augments the differentiation of EPCs. These results strongly support previous observation of rapid differentiation of EPCs captured on VEGF-bound steins in a porcine model. (C) 2012 Elsevier Inc. All rights reserved.