화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.417, No.2, 738-743, 2012
ER stress response during the differentiation of H9 cells induced by retinoic acid
Endoplasmic reticulum (ER) stress occurs during early embryonic development. The aim of this study is to determine whether ER stress occurs during human embryonic stem cell differentiation induced by retinoic acid (RA). H9 human embryonic stem cells were subjected to RA treatment for up to 29 days to induce differentiation. HEK293 cells were treated with RA as a control. The results demonstrate that several ER stress-responsive genes are differentially regulated in H9 and HEK293 cells in response to 5 days of RA treatment. GRP78/Bip was upregulated in H9 cells but downregulated in HEK293 cells. eIF2 alpha was downregulated in H9 cells but not in HEK293 cells. Phosphorylation of eIF2 alpha was downregulated in H9 cells but upregulated in HEK293 cells. XBP-1 was downregulated immediately after RA treatment in H9 cells, but its downregulation was much slower in HEK293 cells. Additionally, two ER-resident E3 ubiquitin ligases, gp78 and Hrd1, were both upregulated in H9 cells following 5 days of exposure to RA. Moreover, the protein Bcl2 was undetectable in H9 cells and H9-derived cells but was expressed in HEK293 cells, and it expression in the two types of cells was unaltered by RA treatment. In H9 cells treated with RA for 29 days, GRP78/Bip, XBP-1 and Bcl2 were all upregulated. These results suggest that ER stress is involved in H9 cell differentiation induced by RA. (C) 2011 Elsevier Inc. All rights reserved.