Biochemical and Biophysical Research Communications, Vol.415, No.2, 355-360, 2011
Proteomic analysis of lipid raft-enriched membranes isolated from internal organelles
The mitochondria-associated membrane (MAM) is a sub-region of the endoplasmic reticulum (ER) that facilitates crosstalk between the ER and mitochondria. The MAM actively influences vital cellular processes including Ca(2+) signaling and protein folding. Detergent-resistant microdomains (DRMs) may localize proteins to the mitochondria/MAM interface to coordinate these events. However, the protein composition of DRMs isolated from this region is not known. Lipid-raft enriched DRMs were isolated from a combined mitochondria/MAM sample and analyzed using two-dimensional reversed-phased tandem mass spectrometry. Strict post-acquisition filtering of the acquired data led to the confident identification 250 DRM proteins. The majority (58%) of the identified proteins are bona fide mitochondrial or ER proteins according to Gene Ontology annotation. Additionally, 74% of the proteins have previously been noted as MAM-resident or -associated proteins. Furthermore, similar to 20% of the identified proteins have a documented association with lipid rafts. Most importantly, known internal LR marker proteins (inositol 1,4,5-trisphosphate receptor type 3, erlin-2, and voltage-dependent anion channel 1) were detected as well as most of the components of the mitochondrial/MAM-localized Ca(2+) signaling complex. Our study provides the basis for future work probing how the protein activities at the mitochondrion/MAM interface are dependent upon the integrity of these internal lipid-raft-like domains. (C) 2011 Elsevier Inc. All rights reserved.
Keywords:Ca(2+) signaling;Detergent-resistant membranes;Mitochondria;Mitochondria-associated ER membranes;Protein folding