Biochemical and Biophysical Research Communications, Vol.414, No.2, 361-366, 2011
Restoration of autophagy by puerarin in ethanol-treated hepatocytes via the activation of AMP-activated protein kinase
We investigated the effects of puerarin, the major isoflavone in Kudzu roots, on the regulation of autophagy in ethanol-treated hepatocytes. Incubation in ethanol (100 mM) for 24 h reduced cell viability by 20% and increased the cellular concentrations of cholesterol and triglycerides by 40% and 20%, respectively. Puerarin stimulation significantly recovered cell viability and reduced cellular lipid accumulation to a level comparable to that in untreated control cells. Ethanol incubation reduced autophagy significantly as assessed by microtubule-associated protein 1 light chain 3 (LC3) expression using immunohistochemistry and immunoblot analysis. The reduced expression of LC3 was restored by puerarin in a dose-dependent manner in ethanol-treated cells. The effect of puerarin on mammalian targets of rapamycin (mTOR), a key regulator of autophagy, was examined in ethanol-treated hepatocytes. Immunoblotting revealed that puerarin significantly induced the phosphorylation of 5'AMP-activated protein kinase (AMPK), thereby suppressing the mTOR target proteins S6 ribosomal protein and 4E-binding protein 1. These data suggest that puerarin restored the viability of cells and reduced lipid accumulation in ethanol-treated hepatocytes by activating autophagy via AMPK/mTOR-mediated signaling. (C) 2011 Elsevier Inc. All rights reserved.