화학공학소재연구정보센터
Automatica, Vol.47, No.8, 1785-1793, 2011
An optimization approach to adaptive Kalman filtering
In this paper, an optimization-based adaptive Kalman filtering method is proposed. The method produces an estimate of the process noise covariance matrix Q by solving an optimization problem over a short window of data. The algorithm recovers the observations h(x) from a system (x) over dot = f (x), y = h(x) + v without a priori knowledge of system dynamics. Potential applications include target tracking using a network of nonlinear sensors, servoing, mapping, and localization. The algorithm is demonstrated in simulations on a tracking example for a target with coupled and nonlinear kinematics. Simulations indicate superiority over a standard MMAE algorithm for a large class of systems. (C) 2011 Elsevier Ltd. All rights reserved.