Applied Surface Science, Vol.258, No.22, 8915-8918, 2012
Urea as a long-term stable alternative to guanidium thiocyanate additive in dye-sensitized solar cell
Photovoltaic performance of 0.05 M urea-contained redox electrolyte is compared to that of 0.05 M guanidinium thiocyanate (GSCN)-contained one in dye-sensitized solar cell. No significant difference in the initial photovoltaic performance is observed, which means that the role of urea additive is similar to that of GSCN. Initial solar-to-electrical conversion efficiency of the device containing GSCN shows 7% that is diminished to 5.8% after 40 days, whereas the device containing urea exhibits stable photovoltaic performance showing that initial efficiency of 7.2% is almost remained unchanged after 40 days (7.1%). The lowered efficiency of the GSCN-contained device is mainly due to the decreased photocurrent density, which is ascribed to the formation of needle-shaped crystals on TiO2 layer. Infrared spectroscopic study confirms that the crystals are dye analogue, which is indicative of dye desorption in the presence of GSCN. On the other hand, no crystals are formed in the urea-contained electrolyte, which implies that dye desorption is negligible. Urea additive is thus found to be less reactive in dye desorption than GSCN, leading to long-term stability. (C) 2012 Elsevier B.V. All rights reserved.