Applied Surface Science, Vol.258, No.15, 5583-5592, 2012
On microstructure and flexural strength of metal-ceramic composite cladding developed through microwave heating
A domestic multimode microwave applicator was used to develop carbide reinforced (tungsten-based) metal-matrix composite cladding on austenitic stainless steel substrate. Cladding was developed through microwave irradiation of the preplaced clad materials at 2.45 GHz for 420 s. Clads show metallurgical bonding with substrate by partial dilution of materials. Back scattered images of clad section confirm uniformly distributed reinforced particles in the metallic matrix. Presence of WC, W2C, NiSi, NiW and Co3W3C phases was detected in the clad. Flexural characteristics show two distinct load transitions attributable to deformations of the matrix and the reinforced particles. Clads fail at the upper transition load; further load is taken by the SS-316 substrate. Clads exhibit good stiffness and good adhesion with the substrate. Multi directional cracks were observed at the clad surface; on further loading, cracks get propagated into the clad thickness without getting peeled-off. Mechanism of clad development has been introduced. (C) 2012 Elsevier B.V. All rights reserved.