Applied Biochemistry and Biotechnology, Vol.166, No.5, 1236-1247, 2012
Substitution of the Catalytic Metal and Protein PEGylation Enhances Activity and Stability of Bacterial Phosphotriesterase
Phosphotriesterase, a pesticide-degrading enzyme, from Flavobacterium sp. was cloned and expressed in Escherichia coli. The catalytic zinc ions were replaced by cobalt atoms increasing the catalytic activity of phosphotriesterase on different pesticides. This metal substitution increased the catalytic activity from 1.4 times to 4 times according to the pesticide. In order to explain this catalytic increase, QM/MM calculations were performed. Accordingly, the HOMO energy of the substrate is closer to the LUMO energy of the cobalt-substituted enzyme. The chemical modification of the enzyme surface with poly(ethylene glycol) increased the thermostability and stability against metal chelating agents of both metal phosphotriesterase preparations.