Applied Biochemistry and Biotechnology, Vol.166, No.3, 680-699, 2012
Analysis of the Production Process of Optically Pure D-Lactic Acid from Raw Glycerol Using Engineered Escherichia coli Strains
Glycerol has become an ideal feedstock for producing fuels and chemicals. Here, five technological schemes for optically pure D-lactic acid production from raw glycerol were designed, simulated, and economically assessed based on five fermentative scenarios using engineered Escherichia coli strains. Fermentative scenarios considered different qualities of glycerol (pure, 98 wt.%, and crude, 85 wt.%) with concentrations ranging from 20 to 60 g/l in the fermentation media, and two fermentation stages were also analyzed. Raw glycerol (60 wt.%) was considered as the feedstock feeding the production process in all cases; then a purification process of raw glycerol up to the required quality was required. Simulation processes were carried out using Aspen Plus, while economic assessments were performed using Aspen Icarus Process Evaluator. D-Lactic acid recovery and purification processes were based on reactive extraction with tri-n-octylamine using dichloromethane as active extractant agent. The use of raw glycerol represents only between 2.4% and 7.8% of the total production costs. Also, the total production costs obtained of D-lactic acid in all cases were lower than its sale price indicating that these processes are potentially profitable. Thus, the best configuration process requires the use of crude glycerol diluted at 40 g/l with total glycerol consumption and with D-lactic acid recovering by reactive extraction. The lowest obtained total production cost was 1.015 US$/kg with a sale price/production cost ratio of 1.53.
Keywords:D-Lactic acid production;Engineered Escherichia coli;Glycerol bioconversion;Process assessment;Process design;Process simulation