- Previous Article
- Next Article
- Table of Contents
Applied Biochemistry and Biotechnology, Vol.165, No.1, 1-12, 2011
From Inulin to Fructose Syrups Using Sol-Gel Immobilized Inulinase
The present work aims to provide the basic characterization of sol-gel immobilized inulinase, a biocatalyst configuration yet unexploited, using as model system the hydrolysis of inulin to fructose. Porous xerogel particles with dimensions in slight excess of 10 mu m were obtained, yielding an immobilization efficiency of roughly 80%. The temperature- and pH-activity profiles displayed a broader bell-shaped pattern as a result of immobilization. In the latter case, a shift of the optimal pH of 0.5 pH units was observed towards a less acidic environment. The kinetic parameters estimated from the typical Michaelis-Menten kinetics suggest that immobilization in sol-gel did not tamper with the native enzyme conformation, but on the other hand, entrapment brought along mass transfer limitations. The sol-gel biocatalyst displayed a promising operational stability, since it was used in more than 20 consecutive 24-hour batch runs without noticeable decay in product yield. The performance of sol-gel biocatalyst particles doped with magnetite roughly matched the performance of simple sol-gel particles in a single batch run. However, the operational stability of the former proved poorer, since activity decay was evident after four consecutive 24-hour batch runs.