Transport in Porous Media, Vol.94, No.1, 339-357, 2012
Onset of Darcy-Brinkman convection in a binary viscoelastic fluid saturated porous layer
The onset of Darcy-Brinkman double-diffusive convection in a binary viscoelastic fluid-saturated porous layer is studied using both linear and weakly nonlinear stability analyses. The Oldroyd-B model is employed to describe the rheological behavior of the fluid. An extended form of Darcy-Oldroyd law incorporating the Brinkman's correction and time derivative is used to describe the fluid flow and the Oberbeck-Boussinesq approximation is invoked. The onset criterion for stationary and oscillatory convection is derived analytically. The effects of rheological parameters, Darcy number, normalized porosity, Lewis number, solute Rayleigh number, and Darcy-Prandtl number on the stability of the system is investigated. The results indicated that there is a competition among the processes of thermal, solute diffusions and viscoelasticity that causes the convection to set in through the oscillatory modes rather than the stationary. The Darcy-Prandtl number has a dual effect on the threshold of oscillatory convection. The nonlinear theory based on the method of truncated representation of Fourier series is used to find the transient heat and mass transfer. Some existing results are reproduced as the particular cases of present study.