Transport in Porous Media, Vol.94, No.1, 19-46, 2012
On the Initiation of a Hydrothermal Eruption Using the Shock-Tube Model
In this work, the authors introduce the shock-tube model for a hydrothermal eruption in a geothermal reservoir. The governing equations, based on the multiphase Euler equations and a Darcy-type law, are solved using a three-phase weighted sub-system numerical solver. Results are then presented which show the importance of the geometry of the geothermal reservoir in predicting the initiation of a hydrothermal eruption. In particular, the porosity, permeability, and cohesion of the reservoir are shown to significantly affect the pressure difference required to initiate an eruption. Finally, the authors show the importance of the initial liquid water/water vapour volume fractions in determining the size of an eruption, and further show boiling to be of major importance.