화학공학소재연구정보센터
Thermochimica Acta, Vol.524, No.1-2, 186-193, 2011
Dynamic cure kinetics and thermal degradation of brominated epoxy resin-organoclay based nanocomposites
The reaction kinetics of epoxy resin cured with stoichiometric amounts of amine-like structure and loaded with different levels of Cloisite 25A (C25A), has been studied by dynamic differential scanning calorimetry (DSC) to investigate the effect of the nano-organoclay particles on the kinetic parameters of the cure reaction. The kinetic analysis of non-isothermal cure showed that the Sestak-Berggren autocatalytic model is suitable to describe the kinetics of these reactions. Analysis of DSC data indicated that the presence of the C25A filler has a very small effect on the kinetics of cure. Thermogravimetric analyses showed higher thermal stability for the epoxy nanocomposites compared to pure epoxy. The activation energy of degradation process was estimated using both Kissinger and Ozawa methods. The epoxy nanocomposites loaded with 10 wt% C25A proved to exhibit high activation energy, indicating that C25A acquired a stabilizing effect upon the decomposition of polymer matrix. (C) 2011 Elsevier B.V. All rights reserved.