화학공학소재연구정보센터
Materials Chemistry and Physics, Vol.133, No.1, 383-391, 2012
Monte Carlo simulation to reveal the copper dissolution kinetics of an ion selective electrode based on copper sulfide
The present work aims at studying copper dissolution of a Cu2+ ion-selective electrode based on a CuS thin film. The electrode is prepared using electrochemical deposition of CuS on a silicon substrate. The obtained film exhibits an apparent cohesive granular structure with an average grain size of about 33 mu m, a small porosity content (<4%) and a thickness of about 7.48 mu m. The Cu2+ electrochemical response shows a nearly Nernstian behavior in the range of pCu 6-1. The copper dissolution is experimentally studied in a wide pH range. In order to quantitatively predict copper mass dissolution, an original numerical model is developed based on Monte Carlo simulation. Our main hypothesis is based on dissolution probability that triggers the whole dissolution process through solution/electrode surface exchanges. Several probability forms are suggested accounting for the real observed electrochemical kinetics. The experimental results show that, under a low pH, the dissolution process severely leads to the consumption of large material. Moreover, our predictions suggest a dissolution profile as a two-stage process irrespective of pH. Our numerical model is able to fit correctly the observed kinetics considering an exponential probability form under all pH conditions. (C) 2012 Elsevier B.V. All rights reserved.