화학공학소재연구정보센터
Materials Chemistry and Physics, Vol.129, No.3, 816-822, 2011
Stable structure of platinum carbides: A first principles investigation on the structure, elastic, electronic and phonon properties
A comprehensive first principles study of structural, elastic, electronic, phonon and thermodynamical properties of novel metal carbide, platinum carbide (PtC) is reported within the density functional theory scheme. The ground state properties such as lattice constant, elastic constants, bulk modulus, shear modulus and finally the enthalpy of PtC in zinc blende (ZB) and rock-salt (RS) structures are determined. The energy band structure and electron density of states for the two phases of PtC are also presented. Of these phases zinc blende phase of PtC is found stable and phase transition from ZB to RS structure occurs at the pressure of about 37.58 GPa. The phonon dispersion curves and phonon DOS are also presented. All positive phonon modes in phonon dispersion curves of ZB-PtC phase indicate a stable phase for this structure. Within the GGA and harmonic approximation, thermodynamical properties are also investigated. All results reveal that the synthesized PtC would favor ZB phase. The compound is stiffer and ductile in nature. (C) 2011 Elsevier B.V. All rights reserved.