화학공학소재연구정보센터
Langmuir, Vol.28, No.20, 7768-7774, 2012
Reconciling Slip Measurements in Symmetric and Asymmetric Systems
In the past decade, the slip of simple liquids on solid surfaces has been demonstrated by many groups. However, the slip of liquids on wettable surfaces is heavily debated. Using colloid probe atomic force microscopy (AFM), we found the slip length of di-n-octylphthalate in a symmetric wettable system (silica) to be around 11 nm, which raises the question of what the measured slip length in an asymmetric hydrophilic-hydrophobic system would be. To answer this question, we investigated liquid slip in one symmetric nonwettable system (hydrophobic DCDMS or OTS) and in one asymmetric hydrophilic (silica)-hydrophobic (DCDMS) system by the same method at driving velocities of between 10 and 80 mu m/s. The slip results obtained from the three systems are in agreement with each other, and this comparison provides a means to self-assess the accuracy and reproducibility of the measured force curves and the fitted slip length in our systems. Furthermore, this method provides access to reliable values of the actual slip length on any investigated flat surface in an asymmetric system, avoiding the difficulty of preparing a symmetric probe/flat surface system in a colloid probe AFM force measurement.