화학공학소재연구정보센터
Langmuir, Vol.28, No.14, 6106-6113, 2012
Biomimetic Droplets for Artificial Engagement of Living Cell Surface Receptors: The Specific Case of the T-Cell
Liquid colloids, in the form of droplets grafted with specific biomolecules, are emerging as potential biomimetic systems. Here we show for the first time the possibility of forming hybrid conjugates between an advanced living cell model, the T-cell of;:he Jurkat cell line, and a specifically grafted droplet. Using T-cells expressing a fluorescent chimeric protein associated with the TCR/CD3 complex and fluorescent ligand-grafted droplets, we demonstrate formation of an interfacial contact concentrated in linking molecules, the morphology and dynamics of which strongly depend on the targeted receptor. The sequence of events ranges from the initial concentration of molecules following an unbound molecule gradient to active actin-driven spreading and fragmentation of the contact, ending with droplet internalization. We observed synchronized colocalization of receptors and ligands driven by cell dynamics and closely mirrored by the droplet interface. Using intracellular calcium probe Fura-2, we also showed that the cell/droplet interaction can trigger the T-cell signaling cascade. By examining molecular dynamics using FRAP measurements, we observed a nearly frozen cell droplet joining interface. Taken together, our results point to liquid colloids as promising new tools both for probing cell surface interactions and receptor dynamics and for manipulating biological cell functions.