Langmuir, Vol.28, No.13, 5872-5881, 2012
Development of a Novel Antifouling Platform for Biosensing Probe Immobilization from Methacryloyloxyethyl Phosphorylcholine-Containing Copolymer Brushes
The immobilization of thiol-terminated poly[(methacrylic acid)-ran-(2-methacryloyloxyethyl phosphorylcholine)] (PMAMPC-SH) brushes on gold-coated surface plasmon resonance (SPR) chips was performed using the "grafting to" approach via self-assembly formation. The copolymer brushes provide both functionalizability and antifouling characteristics, desirable features mandatorily required for the development of an effective platform for probe immobilization in biosensing applications. The carboxyl groups from the methacrylic acid (MA) units were employed for attaching active biomolecules that can act as sensing probes for bio-specific detection of target molecules, whereas the 2-methacryloyloxyethyl phosphorylcholine (MPC) units were introduced to suppress unwanted nonspecific adsorption. The detection efficiency of the biotin-immobilized PMAMPC brushes with the target molecule, avidin (AVD), was evaluated in blood plasma in comparison with the conventional 2D monolayer of 11-mercaptoundecanoic acid (MUA) and homopolymer brushes of poly(methacrylic acid) (PMA) also immobilized with biotin using the SPR technique. Copolymer brushes with 79 mol % MPC composition and a molecular weight of 49.3 kDa yielded the platform for immobilization with the best performance considering its high SIN ratio as compared with platforms based on MUA and PMA brushes. In addition, the detection limit for detecting AVD in blood plasma solution was found to be 1.5 nM (equivalent to 100 ng/mL). The results have demonstrated the potential for using these newly developed surface-attached PMAMPC brushes for probe immobilization and subsequent detection of designated target molecules in complex matrices such as blood plasma and clinical samples.