Langmuir, Vol.28, No.5, 2782-2790, 2012
Dynamic Properties of Bicellar Lipid Mixtures Observed by Rheometry and Quadrupole Echo Decay
In bicellar dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), the transition from isotropic reorientation to partial orientational order, on warming, is known to coincide with a sharp increase in viscosity. In this work, cone-and-plate rheometry, H-2 NMR spectroscopy, and quadrupole echo decay observations have been used to obtain new insights into the dynamics of phases observed in bicellar DMPC/DHPC mixtures. Samples with 25% of the DMPC component deuterated were used to correlate rheological measurements with phase behavior observed by H-2 NMR spectroscopy. Mixtures containing only normal DMPC (DMPC/DHPC) or only chain perdeuterated DMPC (DMPC-d(54)/DHPC) were used to refine rheology and quadrupole echo decay measurements respectively. The viscosity peaked at 4-9 Pa.s, just above the isotropic-to-nematic transition, and then dropped as samples were warmed through the nematic-to-lamellar transition. Quadrupole echo decay times above the nematic-to-lamellar transition were significantly longer than typically observed in the liquid crystalline phase of saturated lipid multilamellar vesicles. This may indicate a damping of slow bilayer undulations resulting from the coupling of opposite bilayer surfaces by DHPC-lined pores.