Langmuir, Vol.27, No.15, 9588-9596, 2011
Direct Generation of Silica Nanowire-Based Thin Film on Various Substrates with Tunable Surface Nanostructure and Extreme Repellency toward Complex Liquids
We report our new achievement on the direct generation of linear polyethylenimine@silica hybrid and silica thin films on various substrates, which is composed of 10 nm nanowire silica structure with tunable micro/nano hierarchical surface morphology. We found that a process for the rapid and controlled self-assembly of crystalline template layer of linear polyethylenimine on substrate surface is critical for the formation of ultrathin silica nanowire structure and micro/nano hierarchical morphology, since the template linear polyethylenimine layer directly promotes the hydrolytic condensation of alkoxysilanes. Templated silica mineralization on the self-assembled linear polyethylenimine layer was confirmed by the studies of X-ray photoelectron spectroscopy (XPS) and thin film X-ray diffraction (XRD). The surface of silica nanostructure and hierarchy could be well controlled by simply adjusting the conditions for LPEI assembly, such as the polymer concentrations and substrate surface property. After a simple fluorocarbon modification, the hierarchical silica nanowire thin film demonstrated robust and reliable super-repelling property toward a series of aqueous liquids (such as commercial inkjet (IJ) ink, soy source, milk). Comparative studies dearly confirmed the critical importance of surface hierarchy for enhancing super-repelling property. Moreover, we found that the forcibly formed dirty sports (both wet and dry) from the complexly composed liquids on the super-antiwetting surface could be easily and completely cleaned by simple water drop flow. We expect these tailored nanosurfaces would have the potentials for practical technological applications, such as liquid transferring, self-cleaning, microfluid, and biomedical-related devices.