화학공학소재연구정보센터
Journal of the Electrochemical Society, Vol.159, No.3, C123-C128, 2012
GILDES Model Simulations of the Atmospheric Corrosion of Zinc Induced by Low Concentrations of Carboxylic Acids
The GILDES computer based model was successfully applied to the atmospheric corrosion of zinc exposed to low concentrations of carboxylic acids in humidified air at room temperature. Under these exposure conditions the expected precipitated phases are zinc oxide (ZnO), zinc hydroxide (Zn(OH)(2)) and several forms of hydrated zinc carboxylate, Zn(CH3CH2COO)(2) center dot 2H(2)O, Zn(CH3COO)(2) center dot 2H(2)O and Zn(HCOO)(2) center dot 2H(2)O. The results were compared to those from laboratory exposures obtained in the same conditions. The model correctly predicts the trend for ZnO and zinc carboxylate formation found in experimental exposures for the three acids tested. According to the simulations, surface protonation, surface acid base reactions, as well as ligand- and proton-induced dissolution reactions play a major role in the initial atmospheric corrosion of zinc. Henry's law constant (K-H) is found to be an important parameter but uncertain due to different reported literature values. When K-H is increased the formation rate of zinc carboxylate also increases. K-H increases in the sequence propionic acid < acetic acid < formic acid, the same order as found for the calculated dissolution rate. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.072203jes] All rights reserved.