화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.134, No.30, 12629-12636, 2012
Pasteur's Tweezers Revisited: On the Mechanism of Attrition-Enhanced Deracemization and Resolution of Chiral Conglomerate Solids
Insights into the mechanism of attrition-enhanced deracemization and resolution of solid enantiomorphic chiral compounds are obtained by crystal size and solubility measurements and by isotopic labeling experiments. Together these results help to deconvolute the various chemical and physical rate processes contributing to the phenomenon. Crystal size measurements highlight a distinct correlation between the stochastic, transient growth of crystals and the emergence of a single solid enantiomorph under attrition conditions. The rapid mass transfer of molecules between the solution and solid phases under attrition is demonstrated, and the concept of a crystal-size-induced solubility driving force is exploited to overcome the stochastic nature of the crystal growth and dissolution processes. Extension to non-racemizing conditions provides a novel methodology for chiral resolution. Implications both for practical chiral separations and for the origin of biological homochirality are discussed.