Journal of the American Chemical Society, Vol.134, No.9, 4332-4345, 2012
Experimental and Computational Insights into the Stabilization of Low-Valent Main Group Elements Using Crown Ethers and Related Ligands
A series of tin(II) triflate and chloride salts in which the cations are complexed by either cyclic or acyclic polyether ligands and which have well-characterized single-crystal X-ray structures are investigated using a variety of experimental and computational techniques. Mossbauer spectroscopy illustrates that the triflate salts tend to have valence electrons with higher s-character, and solid-state NMR spectroscopy reveals marked differences between superficially similar triflate and chloride salts. Cyclic voltammetry investigations of the triflate salts corroborate the results of the Mossbauer and NMR spectroscopy and reveal substantial steric and electronic effects for the different polyether ligands. MP2 and DFT calculations provide insight into the effects of ligands and substituents on the stability and reactivity of the low-valent metal atom. Overall, the investigations reveal the existence of more substantial binding between tin and chlorine in comparison to the triflate substituent and provide a rationale for the considerably increased reactivity of the chloride salts.