화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.134, No.9, 3976-3978, 2012
Rewiring Kinase Specificity with a Synthetic Adaptor Protein
Signaling cascades are managed in time and space by interactions between and among proteins. These interactions are often aided by adaptor proteins, which guide enzyme-substrate pairs into proximity. Miniature proteins are a class of small, well-folded protein domains possessing engineered binding properties. Here we made use of two miniature proteins with complementary binding properties to create a synthetic adaptor protein that effectively redirects a ubiquitous signaling event: tyrosine phosphorylation. We report that miniature-protein-based adaptor 3 uses templated catalysis to redirect the Src family kinase Hck to phosphorylate hDM2, a negative regulator of the p53 tumor suppressor and a poor Hck substrate. Phosphorylation occurs with multiple turnover and at a single site targeted by c-Abl kinase in the cell.