Journal of the American Chemical Society, Vol.134, No.5, 2488-2491, 2012
High-Throughput Examination of Fluorescence Resonance Energy Transfer-Detected Metal-Ion Response in Mammalian Cells
Fluorescence resonance energy transfer (FRET)-based genetically encoded metal-ion sensors are important tools for studying metal-ion dynamics in live cells. We present a time-resolved microfluidic flow cytometer capable of characterizing the FRET-based dynamic response of metal-ion sensors in mammalian cells at a throughput of 15 cells/s with a time window encompassing a few milliseconds to a few seconds after mixing of cells with exogenous ligands. We have used the instrument to examine the cellular heterogeneity of Zn2+ and Ca2+ sensor FRET response amplitudes and demonstrated that the cluster maps of the Zn2+ sensor FRET changes resolve multiple subpopulations. We have also measured the in vivo sensor response kinetics induced by changes in Zn2+ and Ca2+ concentrations. We observed an similar to 30 fold difference between the extracellular and intracellular sensors.