화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.133, No.49, 19922-19930, 2011
Bionano Donor-Acceptor Hybrids of Porphyrin, ssDNA, and Semiconductive Single-Wall Carbon Nanotubes for Electron Transfer via Porphyrin Excitation
Photoinduced electron transfer in self-assemblies of porphyrins ion-paired with ssDNA wrapped around single-wall carbon nanotubes (SWCNTs) has been reported. To accomplish the three-component hybrids, two kinds of diameter-sorted semiconducting SWCNT(n,m)s of different diameter ((n,m) = (6,5) and (7,6)) and free-base or zinc porphyrin bearing peripheral positive charges ((TMPyP(+))M (tetrakis(4-N-methylpyridyl)porphyrin); M = Zn and H(2)) serving as light-absorbing photoactive materials are utilized. The donor-acceptor hybrids are held by ion-pairing between the negatively charged phosphate groups of ssDNA on the surface of the SWCNT and the positively charged at the ring periphery porphyrin macrocycle. The newly assembled bionano donor-acceptor hybrids have been characterized by transmission electron microscopy (TEM) and spectroscopic methods. Photoinduced electron transfer from the excited singlet porphyrin to the SWCNTs directly and/or via ssDNA as an electron mediator has been established by performing systematic studies involving the steady-state and time-resolved emission as well as the transient absorption studies. Higher charge-separation efficiency has been successfully demonstrated by the selection of the appropriate semiconductive SWCNTs with the right band gap, in addition to the aid of ssDNA as the electron mediator.