화학공학소재연구정보센터
Korean Journal of Rheology, Vol.9, No.4, 133-139, December, 1997
다성분계 고분자 블렌드의 Weldline 강도에 관한 연구
A Study on the Weldline Toughness of Multicomponent Polymer Blends
초록
PC(polycarbonate), SAN(styrene-acrylonitrile)공중합체, 그리고 충격 보강제를 근간으로 하는 다성분계 고분자 블렌드에 대하여 고정된 사출 조건에서 블렌드의 조성에 따른 weldine강도의 변화를 조사하였다. 블렌드의 전체적인 함량에 있어서 PC가 그 함량이 높아 연속상이 되는 경우가 비교적 높은 weldline강도를 나타내지만, PC함량이 감소함에 따라서 급격한저하가 발생하여 cocontinuity의 성향이 강한 50% 부근에서 최소 값을 보였다. PC함량이 고정되었을 때에는, 분산상의 점도가 증가할수록 weldline강도가 향상되었는데, 이는 weldline의 형성 시에 발생하는 분수형 흐름장에 의한 분산상의 배양이 억제되어 외부 응력에 대하여 균일하게 대응할 수 있는 형태학을 유지하는 효과로 설명된다. 충격 보강제의 변경과 상용화제의 적용으로부터 얻은 결과를 종합하여 볼 때, 다성분계 고분자 블렌드의 weldline강도는 구성 성분간의 상용성 뿐만 아니라 유변학적인 조건이 만족되어야 효과적으로 향상될 수 있다.
The weldline toughness of multiconponent polymer blends based on PC (polycarbonate), SAU (styrene-acrylonitrile) copolymer, and an impact modifier was investigated for various compositions of the blend at a given injection molding condition. Blends having higher content of PC maintained superior weldine toughness, while considerable reduction in weldline toughness was occurred with decreased amount of PC and a minimum value was reached around 50% of PC. For a fixed amount of PC, the weldline toughness was gradually increased by increasing the melt viscosity of dispersed phase, which is explained by the fact that the orientation induced by the fountain flow field during the mold filling can be effectively prevented at the elevated domain viscosity; thus, the possibility of structural inhomogeneity against the applied stress is minimized. Along with the results from the application of a different impact modifier and compatibilizer, it is suggested that both the compatibility and rhological property of the components should be carefully controlled for the enhancement of weldline toughness in multicomponent polymer blends.
  1. Fellahi S, Meddad A, Fisa B, Favis BD, Adv. Polym. Technol., 14(3), 169 (1995) 
  2. Callaghan TA, Takahuwa K, Paul DR, Padwa AR, Polymer, 34, 3796 (1993) 
  3. Keith JD, Barlow JW, Paul DR, J. Appl. Polym. Sci., 29, 3131 (1984) 
  4. Stokes VK, Hobbs SY, Polymer, 34, 1222 (1993) 
  5. Lee S, Kim H, Korean J. Rheol., 8(3-4), 177 (1996)
  6. Quintens D, Groeninckx G, Guest M, Aerts L, Polym. Eng. Sci., 30, 1474 (1990) 
  7. Quintens D, Groeninckx G, Guest M, Aerts L, Polym. Eng. Sci., 30, 1484 (1990) 
  8. Cheng TW, Keskkula H, Paul DR, J. Appl. Polym. Sci., 45, 1245 (1992) 
  9. Watkins VH, Hobbs SY, Polymer, 34, 3955 (1993) 
  10. Fowler ME, Keskkula H, Paul DR, Polymer, 28, 1703 (1987) 
  11. Wu S, Polym. Int., 29, 229 (1992)
  12. Tomari K, Harada T, Maekawa Z, Hamada H, Iwamoto M, Ukai A, Polym. Eng. Sci., 33(15), 996 (1993) 
  13. Hamada H, Tomari K, Yamane H, Senba T, Hiragushi M, ANTEC Tech. Papers, 1071 (1997)
  14. Okuzono T, Plast. Age, Mar., 159 (1993)
  15. Wu S, Polym. Eng. Sci., 27, 335 (1987) 
  16. Delaby I, Ernst B, Germain Y, Muller R, J. Rheol., 38(6), 1705 (1994) 
  17. Sundararaj U, Dori Y, Macosko CW, Polymer, 36(10), 1957 (1995) 
  18. Jarus D, Hiltner A, Baer E, ANTEC Tech. Papers, 2677 (1997)
  19. Willet JL, Wool RP, Macromolecules, 26, 5336 (1993) 
  20. Cheng TW, Keskkula H, Paul DR, Polymer, 33, 1606 (1992)