화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.133, No.46, 18728-18741, 2011
Structure-Directing Roles and Interactions of Fluoride and Organocations with Siliceous Zeolite Frameworks
Interactions of fluoride anions and organocations with crystalline silicate frameworks are shown to depend subtly on the architectures of the organic species, which significantly influence the crystalline structures that result. One- and two-dimensional (2D) (1)H, (19)F, and (29)Si nuclear magnetic resonance (NMR) spectroscopy measurements establish distinct intermolecular interactions among F(-) anions, imidazolium structure-directing agents (SDA(+)), and crystalline silicate frameworks for as-synthesized siliceous zeolites ITW and MTT. Different types and positions of hydrophobic alkyl ligands on the imidazolium SDA(+) species under otherwise identical zeolite synthesis compositions and conditions lead to significantly different interactions between the F(-) and SDA(+) ions and the respective silicate frameworks. For as-synthesized zeolite ITW, F(-) anions are established to reside in the double-four-ring (D4R) cages and interact strongly and selectively with D4R silicate framework sites, as manifested by their strong (19)F-(29)Si dipolar couplings. By comparison, for as-synthesized zeolite MTT, F(-) anions reside within the 10-ring channels and interact relatively weakly with the silicate framework as ion pairs with the SDA(+) ions. Such differences manifest the importance of interactions between the imidazolium and F(-) ions, which account for their structure-directing influences on the topologies of the resulting silicate frameworks. Furthermore, 2D (29)Si{(29)Si} double-quantum NMR measurements establish (29)Si-O-(29)Si site connectivities within the as-synthesized zeolites ITW and MTT that, in conjunction with synchrotron X-ray diffraction analyses, establish insights on complicated order and disorder within their framework structures.