화학공학소재연구정보센터
Korean Journal of Rheology, Vol.9, No.1, 1-5, March, 1997
고농도 석탄-물 슬러리계의 유변적 성질에 미치는 계면활성제의 영향
The Effects of Surfactants on the Rheological Properties of Concentrated Coal-Water Slurry
초록
새로이 합성한 계면활성제(PS : petroleum sulfonate)와 대표적 분산용 계면활성제(LS : ligno sulfonates, NSF : naphthalene sulfonates formalin condensates)의 분산효과를 상호 비교해보기 위하여 고농도 석탄-물 슬러리계에 대한 유변학적 성질을 측정하였다. 0∼25。C 온도 범위에서 얻어진 유동곡선으로 부터 여러가지 유동 파라미터(relaxation time, (β2)o : structure factor, C2 : shear modulus x22)를 구한 결과, PS가 상대적으로 structure factor, C2와 shear modulus, x22값에 있어서 큰 감소를 보여 주었으며, 특히 shear modulus는 계면활성제의 종류에 따라 큰 차이를 보여주었다. 이러한 현상은 PS가 다가음이온 고분자 전해질과 유사한 구조를 갖고 있어서 석탄 입자에 흡착시 입자간 정전기적 반발과 입체장애를 초래하여 슬러리의 유동성을 향상시킨데 따른 결과로 해석된다.
For comparing dispersion effect of new synthetic surfactant (PS : petroleum sulfonate) with those of commercial surfactants (LS : ligno sulfonate, NSF : napthlene sulfonates formalin condensates), rhcological properties were investigated for the concentrated coal-water, slurry at 0∼25。C. Various flow parameters(relaxation time, (β2)o : structure factor, C2 : shear modulus x22)were obtained from the flow curves. The value of C2 and x22 in PS are markedly decreased than those of commercial surfactants. Especially x22 is wide difference according to kind of surfactant. These results show the large increase of fluidity by addition of PS in coal-water slurry. It could explained by the effect of electrostatic repulsion and steric hinderance among the coal particles, from the PS's structure which is composed of polyanionic electrolytes.
  1. Bingham EC, Fluidity and Plasticity, McGraw-Hill, N.Y. (1992)
  2. Furfari S, 3rd Eur. Confron CLM.I. Chem. E. Symposium Series, 107, 337 (1988)
  3. Lord NW, Ouellette RP, Farah OG, Cheremisinoff PN, "Coal Oil Mixture," Ann Arbor Science Pub., Michigan, 1 (1982)
  4. Bauer WH, Collins EA, "Rheology," (F.R. Eirch Ed.) vol. 4, Academic Press, N.Y. and London (1997)
  5. Hahn SJ, Ree T, Eyring H, Ind. Eng. Chem., 51, 856 (1959) 
  6. NLGI Spokesman (J. Natl. Lubricating Grease Inst.), 23, 129 (1959)
  7. Fredrickson AG, Alche J. Chem. Eng. J., 16, 436 (1970)
  8. Krieger IM, Dougherty TJ, Trans. Soc. Rheol., 3, 137 (1959) 
  9. Cheng DCH, Evans F, Brit. J. Appl. Phys., 16, 1955 (1965)
  10. Mewis J, Spaull AJB, Helsens J, Nature, 253, 618 (1975) 
  11. Wagstaff I, Chaffey CE, J. Colloid Interface Sci., 59(1), 63 (1977) 
  12. Strivens TA, J. Colloid Interface Sci., 57(3), 476 (1976) 
  13. Jobling A, Robert JE, "Rheology of Dipersed System," C.C. Milled, Pergamon Press, 127 (1959)
  14. Umeya K, Kanno T, Wagatsuma M, Nippon Reoroji, 4, 43 (1976)
  15. Umeya K, Kanno T, J. Rheol., 23(2), 123 (1979) 
  16. Verwey EJW, Overbeek JG, "Theory of Stability of Lyophobic Colloid," Elsevier, N.Y. (1948)
  17. Bang JH, Thesis for Ph.D. Degree in Han Yang Univ. (1988)
  18. Sperling R, Ind. Eng. Chem. 40, 890 ASTM-D 8555-565 (1948)