Journal of Structural Biology, Vol.176, No.3, 414-418, 2011
Identification of an artificial peptide motif that binds and stabilizes reduced human DJ-1
Although the precise biochemical function of DJ-1 remains unclear, it has been found to exert cytoprotective activity against oxidative stress. Cys106 is central to this function since it has a distinctly low pK(a) rendering it extremely susceptible for oxidation. This characteristic, however, also poses a severe hindrance to obtain reduced DJ-1 for in vitro investigation. We have developed an approach to produce recombinant human DJ-1 in its reduced form as a bona fide basis for exploring the redox capacities of the protein. We solved the crystal structure of this DJ-1 at 1.56 angstrom resolution, allowing us to capture Cys106 in the reduced state for the first time. The dimeric structure reveals one molecule of DJ-1 in its reduced state while the other exhibits the characteristics of a mono-oxygenated cysteine. Comparison with previous structures indicates the absence of redox dependent global conformational changes in DJ-1. The capture of reduced Cys106 is facilitated by stabilization within the putative active site achieved through a glutamate side chain. This side chain is provided by a crystallographic neighbor as part of a 'Leu-Glu' motif, which was added to the C-terminus of DJ-1. In the structure this motif binds DJ-1 in close proximity to Cys106 through extended hydrophilic and hydrophobic interactions depicting a distinct binding pocket, which can serve as a basis for compound development targeting DJ-1. (C) 2011 Elsevier Inc. All rights reserved.
Keywords:Oxidative stress;Crystal structure of reduced DJ-1;Reduced putative active site cysteine;Active site binding (putative);Protecting DJ-1 oxidation;Compound template