Journal of Industrial and Engineering Chemistry, Vol.18, No.5, 1670-1675, September, 2012
Carbohydrate polymer grafting on stainless steel surface and its biocompatibility study
E-mail:
Surface science plays a critical role in biomaterials development as most biological reactions occur at their surfaces. The suitable choice of coating material, the surface structure and its biocompatibility are essential for fabricating a biomaterial. Herein, we have developed a biocompatible surface modification technology composed of surface electropolishing and carbohydrate polymer grafting, which can be applied to stainless steel, the most widely used stent. The surface of the stainless steel was sequentially modified by acid-treatment, silanization, and covalent attachment of chitosan and dextran. The extensive surface analysis confirmed that the surface was changed from hydrophobic to hydrophilic and from rough to smooth. The biological experiments revealed that the surface-modified stainless steel not only inhibited non-specific fibrinogen adsorption but also repelled most of proteins from human blood,
when compared to bare stainless steel. It was demonstrated that our simple approach for surface
modification could efficiently improve the biocompatibility of a stainless steel-based medical device.
- Castner DG, Ratner BD, Surf. Sci., 500(1-3), 28 (2002)
- Ha CS, Gardella JA, Chem. Rev., 105(11), 4205 (2005)
- Tirrell M, Kokkoli E, Biesalski M, Surf. Sci., 500(1-3), 61 (2002)
- Oehr C, Nucl. Instrum. Meth. B., 208, 40 (2003)
- Luscher TF, Steffel J, Eberli FR, Joner M, Nakazawa G, Tanner FC, Virmani R, Circulation., 115, 1051 (2007)
- Garg S, Serruys PW, J. Am. Coll. Cardiol., 56(10), S1-S42 (2010)
- Courtney JM, Lamba NMK, Sundaram S, Forbes CD, Biomaterials., 15(10), 737 (1994)
- Pitt WG, Park K, Cooper SL, J. Colloid Interface Sci., 111, 343 (1986)
- Griffith LG, Acta Mater., 48(1), 263 (2000)
- Charles PT, Stubbs VR, Soto CM, Martin BD, White BJ, Taitt CR, Sensors(Basel)., 9(1), 645 (2009)
- Ikada Y, Biomaterials., 15(10), 725 (1994)
- Helsen JA, Breme HJ, Metals as Biomaterials, Wiley, New York (1998)
- Tsuruta T, Hayashi T, Kataoka K, Ishihara K, Kimura Y, Biomedical Applications of Polymeric Materials, CRC Press, Boca Raton (1993)
- Tang CJ, Wang GX, Wu X, Li ZG, Shen Y, Lee JCM, Yu QS, J. Vasc. Surg., 53(2), 461 (2011)
- Shaulov Y, Okner R, Levi Y, Tal N, Gutkin V, Mandler D, Domb AJ, ACS Appl.Mater. Int., 1(11), 2519 (2009)
- Martz EO, Goel VK, Pope MH, Park JB, J. Biomed. Mater. Res., 38(3), 267 (1997)
- Thierry B, Merhi Y, Bilodeau L, Trepanier C, Tabrizian M, Biomaterials., 23(14), 2997 (2002)
- Lewis AL, Tolhurst LA, Stratford PW, Biomaterials., 23(7), 1697 (2002)
- Caro A, Humblot V, Methivier C, Minier M, Salmain M, Pradier CM, J. Phys. Chem. B, 113(7), 2101 (2009)
- Chaudhari S, Sainkar SR, Patil PP, Prog. Org. Coat., 58(1), 54 (2007)
- Kang CK, Lee YS, J. Mater. Sci. Mater. Med., 18(7), 1389 (2007)
- Hoven VP, Tangpasuthadol V, Angkitpaiboon Y, Vallapa N, Kiatkamjornwong S, Carbohydr. Polym., 68(1), 44 (2007)
- Ye P, Jiang J, Xu ZK, Colloids Surf. B., 60(1), 62 (2007)
- Yu DG, Jou CH, Lin XC, Yang MC, Colloids Surf. B., 54(2), 222 (2007)
- Eriksson M, Notley SM, Pelton R, Wagberg L, J. Colloid Interface Sci., 310(1), 312 (2007)
- Wang AJ, Xu JJ, Chen HY, J. Chromatogr. A., 1147(1), 120 (2007)
- Tao YY, Carta G, J. Chromatogr. A., 1211(1-2), 70 (2008)
- Eidelman RS, Hennekens CH, Eur. Heart J., 24(6), 499 (2003)