화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.115, No.19, 6304-6311, 2011
Surface Characterization and AFM Imaging of Mixed Fibrinogen-Surfactant Films
This study describes the adsorption behavior of mixed protein/surfactant systems at the air-water interface: specifically fibrinogen and the fluorinated and hydrogenated surfactants (C(8)FONa, C(8)HONa, and C(12)HONa). Surface tension techniques and atomic force microscopy (AFM) have been combined to investigate the adsorption behavior of these mixed systems. Interfacial rheology showed that fibrinogen has a low dilatational modulus at the air-water interface when compared to other proteins, suggesting the formation of a weak surface network. Fluorinated and hydrogenated surfactants severely decreased the dilatational modulus of the adsorbed fibrinogen film at the air-water interface. These measurements suggest the progressive displacement of fibrinogen from the air-water interface by both types of surfactants. However, in the case of fibrinogen/fluorinated surfactant systems, surface tension and dilatational rheology measurements suggest the formation of complexes with improved surface activity. AFM imaging of fibrinogen in the presence and absence of surfactants provided new information on the structure of mixed surface films, and revealed new features of the interaction of fibrinogen with hydrogenated and fluorinated surfactants. These studies suggest complexes formed between fibrinogen and fluorinated surfactants which are more surface active than fibrinogen, while the absence of interaction between fibrinogen and hydrogenated surfactants (C(8)HONa and C(12)HONa) results in compaction of the surface layer.