화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.116, No.21, 5180-5192, 2012
Surface-Catalyzed Chlorine and Nitrogen Activation: Mechanisms for the Heterogeneous Formation of ClNO, NO, NO2, HONO, and N2O from HNO3 and HCl on Aluminum Oxide Particle Surfaces
It is well-known that chlorine active species (e.g., Cl-2, ClONO2, ClONO) can form from heterogeneous reactions between nitrogen oxides and hydrogen chloride on aerosol particle surfaces in the stratosphere. However, less is known about these reactions in the troposphere. In this study, a potential new heterogeneous pathway involving reaction of gaseous Ha and HNO3 on aluminum oxide particle surfaces, a proxy for mineral dust in the troposphere, is proposed. We combine transmission Fourier transform infrared spectroscopy with X-ray photoelectron spectroscopy to investigate changes in the composition of both gas-phase and surface-bound species during the reaction under different environmental conditions of relative humidity and simulated solar radiation. Exposure of surface nitrate-coated aluminum oxide particles, from prereaction with nitric acid, to gaseous HCl yields several gas-phase products, including ClNO, NO2, and HNO3, under dry (RH < 1%) conditions. Under humid more conditions (RH > 20%), NO and N2O are the only gas products observed. The experimental data suggest that, in the presence of adsorbed water, ClNO is hydrolyzed on the particle surface to yield NO and NO2, potentially via a HONO intermediate. NO2 undergoes further hydrolysis via a surface-mediated process, resulting in N2O as an additional nitrogen-containing product. In the presence of broad-band irradiation (lambda > 300 nm) gas-phase products can undergo photochemistry, e.g., ClNO photodissociates to NO and chlorine atoms. The gas-phase product distribution also depends on particle mineralogy (Al2O3 vs CaCO3) and the presence of other coadsorbed gases (e.g., NH3). These newly identified reaction pathways discussed here involve continuous production of active ozone-depleting chlorine and nitrogen species from stable sinks such as gas-phase HCl and HNO3 as a result of heterogeneous surface reactions. Given that aluminosilicates represent a major fraction of mineral dust aerosol, aluminum oxide can be used as a model system to begin to understand various aspects of possible reactions on mineral dust aerosol surfaces.