화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.116, No.2, 832-838, 2012
Sampling the Proton Transfer Reaction Coordinate in Mixed Quantum-Classical Molecular Dynamics Simulations
An umbrella sampling approach based on the vibrational energy gap is presented and examined for exploring the reaction coordinate for a proton transfer (PT) reaction. The technique exploits the fact that for a PT reaction the energy gap between the vibrational ground and excited states of the transferring proton reaches a minimum at the transition state. Umbrella sampling is used within mixed quantum-classical simulations to identify the transition state configurations and explore the reaction free energy curve and vibrationally nonadiabatic coupling. The method is illustrated by application to a model phenol-amine proton transfer reaction complex in a nanoconfined solvent. The results from this new umbrella sampling approach are consistent with those obtained from previous umbrella sampling calculations based on a collective solvent coordinate. This sampling approach further provides insight into the vibrationally nonadiabatic coupling for the proton transfer reaction and has potential for simulating vibrational spectra of PT reaction complexes in solution.